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a b s t r a c t

Integrating multi-source information has recently shown promising performance in predicting Alzhei-
mer's disease (AD). Multiple kernel learning (MKL) plays an important role in this regard by learning the
combination weights of a set of base kernels via the principle of margin maximisation. The latest
research on MKL further incorporates the radius of minimum enclosing ball (MEB) of training data to
improve the kernel learning performance. However, we observe that directly applying these radius-
incorporated MKL algorithms to AD prediction tasks does not necessarily improve, and sometimes even
deteriorate, the prediction accuracy. In this paper, we propose an improved radius-incorporated MKL
algorithm for AD prediction. First, we redesign the objective function by approximating the radius of
MEB with its upper bound, a linear function of the kernel weights. This approximation makes the
resulting optimisation problem convex and globally solvable. Second, instead of using cross-validation,
we model the regularisation parameter C of the SVM classifier as an extra kernel weight and
automatically tune it in MKL. Third, we theoretically show that our algorithm can be reformulated into
a similar form of the SimpleMKL algorithm and conveniently solved by the off-the-shelf packages. We
discuss the factors that contribute to the improved performance and apply our algorithm to discriminate
different clinic groups from the benchmark ADNI data set. As experimentally demonstrated, our
algorithm can better utilise the radius information and achieve higher prediction accuracy than the
comparable MKL methods in the literature. In addition, our algorithm demonstrates the highest
computational efficiency among all the comparable methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pattern recognition techniques have been extensively applied
to the analysis and diagnosis of medical diseases, and their
effectiveness and significance have been well demonstrated in
the literature [1–3]. In particular, accurate classification of people
contracting a disease and the healthy population helps not only
treatment but also early prevention. Therefore, developing better
classification methods in this regard is highly desired. In this
paper, we aim to develop a new pattern classification algorithm

that can achieve improved classification performance when
applied to Alzheimer's disease.

Alzheimer's disease (AD in short) is the most common neurode-
generative disease, covering 60–70% age-related dementia [4]. It is a
fatal disease that worsens as it progresses. Mild cognitive impairment
(MCI) is a precursor of AD. It is heterogeneous, with a conversion rate
of 15% per year to AD [5]. Considering the immense cost on looking
after AD patients, early identification of MCI and AD patients is of
great significance. As a result, the following two classification tasks
become important: (i) discriminating MCI patients from the healthy
population; and (ii) discriminating the MCI patients who will convert
to AD from those who will not. Since the two tasks can generally be
viewed as predicting whether a person will develop towards or into
AD, we call them collectively “AD prediction” for short in this paper.

Recent studies have demonstrated neuroimaging techniques as
an important meanings for AD analysis [6,7]. For example, magnetic
resonance imaging (MRI) shows grey matter morphometry, and
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Fluorodeoxyglucose (FDG) positron emission tomography (PET)
shows metabolic activity. In this case, more effective AD prediction
methods have been developed by combining the complementary
information carried by these imaging modalities [8,9]. As seen in the
recent literature, the combination methods can be performed at
feature level [10,11,8,12–14] or classifier level [15]. A common
practice of feature-level combination is to concatenate the features
from different modalities into a long feature vector [10,11] and use it
for classification. However, such concatenation usually requires
proper normalisation of the features from different modalities.
Otherwise, classification could be dominated by the features that
have large variation but are not necessarily discriminative, leading to
less satisfying classification performance.

In the past several years, multiple kernel learning (MKL) has
shown superior performance to the methods using feature-level
combination on AD prediction [15]. MKL is an important extension
of support vector machines (SVM) [16] for handling multiple
information sources. By predefining one (or multiple in general)
“base” kernel function for each source, MKL aims to find the
optimal linear combination weights of these kernels by maximis-
ing classification-performance-related criteria such as the margin
of two classes. One of the representative algorithms is SimpleMKL
[17]. It has been used for AD prediction by combining multiple
modalities such as MRI, PET, and cerebrospinal fluid (CSF) para-
meters [12–14]. Due to its promising classification performance
and solid theoretical foundation, SimpleMKL [17] is regarded as
the state-of-the-art for AD prediction with multiple modalities.

Recent research [18–20] proposes to use more sophisticated
criteria to optimise the kernel weights. In addition to the margin
of two classes, these criteria consider the radius of minimum
enclosing ball (MEB) of training data. The logic lies at that the radius
affects the generalisation performance of SVM and it varies with the
kernel weights. Hence, this radius shall be considered when seeking
the optimal weight values. In the following, we call the MKL
algorithms in [18–20] “radius-incorporated MKL” for short.

Our study observes that when applied to AD prediction, these
radius-incorporated MKL algorithms do not necessarily improve,
sometimes even deteriorate, the classification performance. By
looking into this, we find that the tasks of AD prediction often
have a small number of training samples and the involved classes
are usually difficult to differentiate. Based on this observation, we
hypothesise that the following two issues lead to the unsatisfying
classification performance of these radius-incorporated MKL algo-
rithms: (i) their objective functions are not convex. This usually
leads to a locally (rather than globally) optimal solution. Unless the
locally optimal solution is close enough to the (unknown in
practice) globally optimal solution, the kernel weights will not
be properly optimised; (ii) essentially as an SVM classifier, MKL
also needs to tune the regularisation parameter C to attain good
classification. The above radius-incorporated MKL algorithms
employ multi-fold cross-validation technique to tune C. Never-
theless, when the number of training samples is small, this
technique will become less reliable and may select an inappropri-
ate value for C. Such a selection could lead to poor classification
performance, especially when the classes are difficult to separate,
as in the tasks of AD prediction.

To address the above two issues, we propose an improved
radius-incorporated MKL algorithm. Firstly, to address the issue of
non-convexity, we employ an approximation to the radius of MEB
in our objective function, rather than directly using the radius as
existing algorithms. This approximation can be shown as a linear
function of the kernel weights. This makes our objective function
convex and a globally optimal solution is therefore guaranteed, as
proved in this paper. Also, we discuss the relationship between
this approximation and the original radius to give a theoretical
support for using this approximation. Secondly, to address the

issue of tuning the parameter C, we do not use cross-validation.
Instead, we define an extra dummy base kernel and relate C to the
weight of this kernel. In doing so, C can be tuned with the other
weights in MKL, and this mitigates the reliability issue of cross-
validation in the case of small sample. This trick of tuning C has
been used for model selection of SVM [21,22] and kernel learning
[23]. However, it has not been integrated into the radius-
incorporated MKL algorithms, and we find that tuning C in this
way can effectively help improving the classification performance
of MKL on the tasks of AD prediction.

In addition, the radius-incorporated MKL algorithm proposed
in this paper brings computational advantage. Our objective
function can be transformed into a form similar to that in the
SimpleMKL. This allows our algorithm to be readily implemented
by existing software packages. This merit does not apply to
existing radius-incorporated MKL algorithms, which need more
sophisticated optimisation algorithms. Also, as mentioned above,
our algorithm tunes the parameter C via optimisation instead of
timing-consuming cross-validation. These factors contribute to the
higher computational efficiency, which will be experimentally
demonstrated.

Experimental studies are conducted on 11 UCI machine learn-
ing benchmark data sets and three AD prediction tasks. We
compare our algorithm with a set of state-of-the-art MKL algo-
rithms, including unweighted average MKL, SimpleMKL [17],
radius-incorporated algorithms in [18–20], and non-sparse MKL
algorithms [24]. As will be demonstrated, our algorithm can
achieve better classification performance on AD prediction tasks
and higher computational efficiency than existing algorithms in
comparison.

The rest of this paper is organised as follows. The background
on MKL is reviewed in Section 2. In Section 3, we develop our
algorithm and analyse its properties. After that, two factors
contributing to the improvement of our algorithm are discussed,
and two additional algorithms are designed to experimentally
verify this discussion. Section 5 reports our experimental study
and the conclusion is drawn in Section 6.

2. Background

Let fx1;…; xng be a set of n training samples. xiði¼ 1;…;nÞ is a
d-dimensional column vector in a Euclidean space Rd. Let yi be the
class label of xi, and its value is þ1 or �1. Let ϕð�Þ : Rd-H be a
probably nonlinear mapping from Rd to a higher-dimensional
feature space H. A kernel function of xi and xj is defined as the
inner product between ϕðxiÞ and ϕðxjÞ [25]. It is expressed as
kðxi; xjÞ ¼ ϕðxiÞ>ϕðxjÞ, where > denotes the transpose of a vector.
The mapping ϕð�Þ usually cannot be explicitly computed.

2.1. Traditional MKL

As previously mentioned, MKL employs a set of base kernels.
Let m be the number of base kernels, and the p-th kernel is
denoted by kpð�; �Þ,1 where p¼ 1;…;m. Accordingly, let ϕpð�Þ :
Rd-Hp be a probably nonlinear mapping associated with the p-
th base kernel, where Hp is the p-th feature space. It is known that
kpð�; �Þ ¼ ϕpð�Þ>ϕpð�Þ by definition. Let γp be the weight of kpð�; �Þ and
let γ¼ ðγ1;…; γmÞ> be an m-dimensional column vector. Let kð�; �; γÞ
denote a linear combination of these base kernels and it is
expressed as kð�; �; γÞ ¼∑m

p ¼ 1γpkpð�; �Þ. Note that we explicitly show
γ as a parameter of this kernel to emphasise its dependence on

1 Note that the symbol kpð�; �Þ is used to emphasise the kernel “function”, while
kpðxi ; xjÞ is used to emphasise the kernel function “value”.
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these kernel weights. In this paper we call kð�; �; γÞ the “final”
kernel for short. Defining ϕð�; γÞ ¼ ½ ffiffiffiffiffi

γ1
p

ϕ1ð�Þ> ;…;
ffiffiffiffiffiffi
γm

p
ϕmð�Þ> �> , it is

not difficult to see that

kð�; �; γÞ ¼ ∑
m

p ¼ 1
γpkpð�; �Þ ¼ ∑

m

p ¼ 1
ð ffiffiffiffiffi

γp
p

ϕpð�ÞÞ> ð
ffiffiffiffiffi
γp

p
ϕpð�ÞÞ ¼ ϕð�; γÞ>ϕð�; γÞ:

ð1Þ
This result shows that conceptually, MKL can be viewed as mapping
a sample x onto a feature space HðγÞ via ϕð�; γÞ and using a single
kernel kð�; �; γÞ. This concept will be frequently used to derive our
algorithm.

As mentioned in Section 1, MKL aims to seek the optimal kernel
weights γ. Most of existing MKL algorithms [17,24,26] find the
optimal γ by maximising the margin of two classes as

min
γ;ω;b;ξ

1
2
‖ω‖2þC ∑

n

i ¼ 1
ξi

s:t: yiðω>ϕðxi; γÞþbÞZ1�ξi; ξiZ0; 8 i; ∑
m

p ¼ 1
γp ¼ 1; γpZ0; 8p:

ð2Þ
where ω is the normal of the SVM separating hyperplane, b the
bias of this hyperplane, and ξi the slack variable for sample xi. Two
constrains (∑m

p ¼ 1γp ¼ 1 and γpZ0) are imposed to ensure that
(i) the final kernel kð�; �; γÞ will not become unbounded due to an
arbitrarily large γp value; and (ii) kð�; �; γÞ will maintain its positive-
definiteness.

2.2. The radius of the minimum enclosing ball (MEB)

The MEB is a ball enclosing training samples with the minimum
radius. Following [25], this ball can be found by solving

min
R;c

R2; s:t: ‖ϕðxi; γÞ�c‖2rR2; 8 i¼ 1;…;n; ð3Þ

where c and R denote the centre and the radius, respectively. Since
ϕð�; γÞ is usually not explicitly known, this problem is solved in its
dual form [27]. Let KðγÞ be the kernel matrices for the final kernel.
The dual problem is expressed as

R2
0ðγÞ ¼ max

β
½β>diagðKðγÞÞ�β>KðγÞβ�; s:t: β>1¼ 1; 0rβ

� �
; ð4Þ

where diagðKðγÞÞ denotes a column vector consisting of the
diagonal entries of KðγÞ, β is an n-dimensional column vector
representing the dual variables, 1 denotes a column vector with all
entries being “1”, and R0ðγÞ denotes the radius of the found MEB.
Eq. (4) indicates two things: (i) the maximisation problem within
the curly brackets is the dual problem to solve; and (ii) the
maximum objective function value is equivalent to the squared
radius of the MEB [25]. Readers are referred to [25, Section 7.1] or
Section 7.3 in the SVM tutorial2 for the detailed derivation of the
radius of MEB.

2.3. Existing radius-incorporated MKL

It is known that the generalisation performance of SVM can be
unbiasedly estimated by the leave-one-out error (LOO) on a
training sample set [28]. Also, the LOO error is upper bounded
by the quantity R2=ρ2, which is known as the radius-margin bound
(RMB) in the literature [22]. Since the margin ρ equals 1=JωJ in
SVM, the bound is often expressed as R2‖ω‖2. To obtain a classifier
with excellent generalisation performance, a small LOO error is
desired, which in turn prefers small ‖ω‖2 and small R2. Existing

radius-incorporated MKL algorithms just implement this idea, in a
variety of ways.

The algorithm in [18] minimises the following objective function:

min
γ;ω;b;ξ

1
2
‖ω‖2þ C

∑m
p ¼ 1γpR

2
p

∑
n

i ¼ 1
ξ2i ;

s:t: yiðω>ϕðxi; γÞþbÞZ1�ξi; 8 i; ∑
m

p ¼ 1
γp ¼ 1; γpZ0; 8p; ð5Þ

where Rp is the radius of the MEB in the space Hp corresponding to
kpð�; �Þ. Instead of explicitly computing the radius R2

0ðγÞ in Eq. (4), this
algorithm computes Rp for each base kernel and uses its linear
combination ∑m

p ¼ 1γpR
2
p to approximate R2

0ðγÞ. This approximation
avoids solving R2

0ðγÞ and therefore brings computational advantage.
In this paper, this approximation will be adopted into our algorithm.
By doing so, we can obtain a radius-incorporated MKL algorithm that
is theoretically more elegant and computationally more efficient
than the one developed in [18].

Another algorithm in [19] minimises the following objective
function:

min
γ;ω;b;ξ

1
2
R2
0ðγÞ‖ω‖2þC ∑

n

i ¼ 1
ξi;

s:t: yiðω>ϕðxi; γÞþbÞZ1�ξi; ξiZ0; 8 i; γpZ0; 8p: ð6Þ

As seen, R2
0ðγÞ is explicitly computed here. To solve this problem,

the work in [19] firstly converts the primal problem to its dual
problem as

max
α

α>1� 1

2R2
0ðγÞ

ðα○yÞ>KðγÞðα○yÞ
( )

;

s:t: α>y¼ 0; 0rαrC1; ð7Þ

Due to the strong duality [27] of the primal problem, the mini-
mum objective function value of the primal problem equals the
maximum objective function value of the dual problem. Therefore,
the work in [19] defines J ðγÞ as the maximum objective function
value of Eq. (7) and reformulates Eq. (6) into

min
γ

J ðγÞ; s:t: γpZ0; 8p; ð8Þ

where J ðγÞ ¼maxαfα>1�ð1=2R2
0ðγÞÞðα○yÞ>KðγÞðα○yÞg subject to

the constraints α>y¼ 0 and 0rαrC1.
The work in [19] proposes a tri-level optimisation process to

solve the above problem. Specifically, at each iteration, (i) when a
new set of kernel weights γ is obtained, R2

0ðγÞ will be updated
by solving the quadratic programming (QP) problem in Eq. (4);
(ii) The updated R2

0ðγÞ is combined into Eq. (7) to solve another QP
problem to update α and then a new value of J ðγÞ is obtained;
(iii) After that, γ will be updated according to Eq. (8) and then go
back to Step (i). The above procedure is repeated until conver-
gence. As pointed out in [19], the optimisation problem in Eq. (8) is
not convex with respect to γ and can only converge to a locally
optimal solution.

Our algorithm will have an optimisation process similar to the
above. However, it does not need to solve the QP problem in Step
(i) due to adopting the approximation in [18]. As will be seen, our
algorithm can achieve better performance in terms of classification
and computation than [19]. Last but not least, comparing Eqs.
(6) and (5) can find that the work in [19] does not impose the
constraint ∑m

p ¼ 1γp ¼ 1 encountered at the end of Section 2.1. As
highlighted in [19], this is an important advantage over [18]
because this constraint is not necessarily an optimal setting. We
shall let MKL automatically decide the scale of γ by utilising the
radius information. Note that this desirable property is preserved
in our algorithm.2 Available at: http://research.microsoft.com/pubs/67119/svmtutorial.pdf
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3. The proposed algorithm

As indicated in Section 1, we believe that two issues, a non-
convex objective function and the cross-validation-based regular-
isation parameter tuning, lead to the unsatisfying prediction
performance of existing radius-incorporated MKL algorithms
[18,19] on AD prediction tasks. Our improvement consists of two
ideas. One is to approximate the radius of MEB with a linear
function of the kernel weights, and the other is to jointly optimise
the regularisation parameter with the kernel weights via MKL.

3.1. Approximation to the radius of MEB

We firstly show the relationship between the radius of MEB in
the feature space HðγÞ and a linear combination of the p radiuses
in the feature space H1;…;Hp. It is this relationship who inspires
and justifies our idea.

This relationship was observed in [18], as stated in Theorem 1.
Recall that γpðγpZ0Þ is the weight for the p-th base kernel; R0ðγÞ is
the radius of MEB defined in Eq. (4); and Rp is the radius in Hp.

Theorem 1. It can be proved that R2
0ðγÞr∑m

p ¼ 1γpR
2
p.

For self-containedness, we have provided a more rigorous proof in
the Appendix.

This theorem indicates that ∑m
p ¼ 1γpR

2
p is an upper bound of

R2
0ðγÞ. Note that Rp

2 can be pre-computed once the p base kernels
are predefined, and it remains constant. Therefore, the only
variables in ∑m

p ¼ 1γpR
2
p are the weights γ, and this upper bound is

consequently a linear function of γ.
Inspired by this observation, we propose to approximate R2

0ðγÞ
with this upper bound. It will bring forth the following benefits (as
will be shown in the following parts): (i) our objective function
can be proved to be an upper bound of the LOO error. This
provides the theoretical justification for minimising our objective
function to optimise γ; (ii) this approximation is pivotal for linking
our algorithm to SimpleMKL, which allows it to be readily
implemented by the off-the-shelf packages; and (iii) It makes
our optimisation problem convex with respect to γ, and this
greatly facilities the optimisation.

Since this approximation was also used in [18], we highlight the
differences as follows: Firstly, that work cannot automatically
handle the scaling issue of γ, as pointed out in [19]. As a result,
an additional norm-constraint, ∑m

p ¼ 1γp ¼ 1, has to be imposed.
However, which norm should be used is an issue itself. Our
algorithm is free of this issue; secondly, our algorithm can
automatically tune the parameter C, while cross-validation has to
be used in [18]; lastly, our algorithm can achieve superior AD
prediction performance to the algorithm in [18], as will be
experimentally demonstrated.

3.2. The proposed radius-incorporated MKL algorithm (L2BRMKL)

The radius-margin bound is derived based on a hard-margin
SVM [22]. Nevertheless, The classes in AD prediction cannot be
well separated in general, and a soft-margin SVM is needed. To
make this bound still applicable, we use a 2-normed soft-margin
SVM3 because it can be rewritten as a hard-margin SVM by slightly
modifying its kernel matrix from K to KþI=C, where I is an
identity matrix and C is the regularisation parameter [22,21].

To incorporate the radius information, we could directly mini-
mise the radius-margin bound to optimise the weights γ. Apply-
ing the radius-margin bound gives the following optimisation

problem (We assume that the 2-normed soft-margin SVM has
been rewritten into a hard-margin one)

min
γ

min
ω;b

1
2
R2
0ðγÞ‖ω‖2;

s:t: yiðω>ϕðxi; γÞþbÞZ1; 8 i; γpZ0; 8p; ð9Þ

However, this optimisation shares the same problem of [19]. That
is, a direct incorporation of the radius makes the problem non-
convex, which is prone to being trapped into a local solution.

To handle this situation, we propose to approximate R2
0ðγÞ with

the result in Theorem 1. Recall that the kernel matrix is modified
from KðγÞ to KðγÞþI=C. Now we define one more base kernel to
account for this modification: γmþ1 is defined as 1=C, and a
dummy base kernel matrix is defined as the identity matrix I. In
this way, we can utilise MKL to jointly tune C.

Now, we formally propose the objective function of L2BRMKL
as

min
γ

min
ω;b

1
2

∑
mþ1

p ¼ 1
γpR

2
p

 !
‖ω‖2;

s:t: yiðω>ϕðxi; γÞþbÞZ1; 8 i; γpZ0; 8p: ð10Þ

Its properties are shown through the following propositions.

Proposition 1. The objective function in Eq. (10) is an upper bound
of the radius-margin bound in the form of 1

2 R
2
0ðγÞ‖ω‖2.

Proof. By Theorem 1, we can obtain that R2
0ðγÞr∑mþ1

p ¼ 1γpR
2
p , and it

leads to 1
2R

2
0ðγÞ‖ω‖2r1

2 ð∑mþ1
p ¼ 1γpR

2
pÞ‖ω‖2. This completes the

proof. □

Proposition 1 indicates that by minimising this objective
function, we can restrict the value of the radius-margin bound,
which will in turn restrict the LOO error, an unbiased estimate of
the generalisation error of SVM. This provides justification for our
objective function.

In the following part, we show that our optimisation problem
in Eq. (10) can be addressed via solving a convex optimisation
problem. To this end, we rewrite the problem in Eq. (10) as

min
γ

J ðγÞ; s:t: γpZ0; 8p; ð11Þ

where

J ðγÞ ¼ min
ω;b

1
2

∑
mþ1

p ¼ 1
γpR

2
p

 !
‖ω‖2;

(

s:t: yiðω>ϕðxi; γÞþbÞZ1; 8 i
)
: ð12Þ

The following Theorem 2 shows that the problem in Eq. (11) can be
reformulated into a form similar to SimpleMKL [17]. The mere but
critical difference is that a radius-weighted norm-constraint is used,
compared with an unweighted version in [17]. The significance of
Theorem 2 lies at that (i) it reveals the connection of our algorithm
with traditional MKL without using the radius information; (ii) it
shows that our radius-incorporated MKL algorithm, which appears
to be sophisticated, can essentially be reduced to a slightly changed
traditional MKL. (iii) It suggests that our algorithm can be efficiently
solved by the existing MKL software packages.

To prove Theorem 2, we first give Proposition 2 for the
optimisation problem in Eq. (11). Its proof can be found in our
previous work [20].

Proposition 2. The objective function value J ðγÞ remains unchanged
when γ is scaled to τγ, where the scale factor τ is any positive scalar.
Also, the SVM decision function of the resulting MKL algorithm is not
affected by τ.

3 In a 2-normed soft-margin SVM, the power of the slack variable ξi in the SVM
object function is set as 2. The details can be found in [25, Chapter 7.2].
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With Proposition 2, Theorem 2 shows that solving the optimi-
sation in Eq. (11) can be converted to solving a related but simpler
optimisation.

Theorem 2. The optimal solution of the optimisation problem in
Eq. (11), denoted as γ⋆, can be written as γ⋆ ¼ ð∑mþ1

p ¼ 1γ
⋆
p R

2
pÞη⋆, where

η⋆ is the optimal solution of the following optimisation problem

min
η

J ðηÞ; s:t: ∑
mþ1

p ¼ 1
ηpR

2
p ¼ 1; ηpZ0; 8p: ð13Þ

where

J ðηÞ ¼ min
~ω ;b

1
2
‖ ~ω‖2; s:t: yið ~ω>ϕðxi; ηÞþbÞZ1; 8 i

� �
: ð14Þ

Also, for the SVM decision function of the resulting MKL algorithm,
denoted by f ðxÞ, it can be proved that f ðxÞ ¼ ~ω>ϕðx; ηÞþb¼
ω>ϕðx; γÞþb.

Proof. Defining ~ω : ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∑mþ1

p ¼ 1γpR
2
pÞ

q
ω, Eq. (12) is rewritten as

J ðγÞ ¼ min
~ω ;b

1
2
‖ ~ω‖2; s:t: yi ~ω>ϕ xi;

γ

∑mþ1
p ¼ 1γpR

2
p

 !
þb

 !
Z1; 8 i:

( )
ð15Þ

Letting

τ¼ 1

∑mþ1
p ¼ 1γpR

2
p

and η¼ τγ (that is, ηp ¼ τγp; 8p), we obtain that

∑
mþ1

p ¼ 1
ηpR

2
p ¼ ∑

mþ1

p ¼ 1
τγpR

2
p ¼ τ ∑

mþ1

p ¼ 1
γpR

2
p ¼ 1: ð16Þ

The last equality is a direct result of the definition of τ. Also,
applying Proposition 2, we can obtain J ðηÞ ¼ J ðτγÞ ¼ J ðγÞ. Hence,
Eq. (15) can be rewritten with respect to η as

J ðηÞ ¼ min
~ω ;b

1
2
‖ ~ω‖2; s:t: yið ~ω>ϕðxi; ηÞþbÞZ1; 8 i;

�

∑
mþ1

p ¼ 1
ηpR

2
p ¼ 1; ηpZ0; 8p:

)
; ð17Þ

Because ηp is not a variable of this problem, the constraint on ηp
can be moved out of the curly brackets and this gives the result in
Eq. (14). Then, combing the constraints on ηp with minηJ ðηÞ leads
to the optimisation problem in Eq. (13) exactly. This proves the
first part of this theorem.

We now prove the second part on SVM decision function. Note
that ϕðx; ηÞ can be written as ½ ffiffiffiffiffi

η1
p

ϕ1ðxÞ> ;…;
ffiffiffiffiffiffiffiffiffiffiffi
ηmþ1

p
ϕmþ1ðxÞ> �> .

We partition ~ω in a similar manner as ~ω ¼ ½ ~ω>
1 ;…; ~ω>

mþ1�> , and
then obtain that

f ðxÞ ¼ ~ω>ϕðx; ηÞþb¼ ∑
mþ1

p ¼ 1
~ω>
p

ffiffiffiffiffi
ηp

p
ϕpðxÞþb¼ ∑

mþ1

p ¼ 1
~ω>
p

ffiffiffiffiffiffiffi
τγp

p
ϕpðxÞþb

¼ ∑
mþ1

p ¼ 1
ω>

p
ffiffiffiffiffi
γp

p
ϕpðxÞþb¼ω>ϕðx; γÞþb: ð18Þ

In the last two steps, we use the following facts:
(i) ~ω : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∑mþ1

p ¼ 1γpR
2
pÞ

q
ω¼ω=

ffiffiffi
τ

p
; and (ii) ϕðx; γÞ ¼ ½ ffiffiffiffiffi

γ1
p

ϕ1ðxÞ> ;…;ffiffiffiffiffiffiffiffiffiffiffi
γmþ1

p
ϕmþ1ðxÞ> �> and the partition that ω¼ ½ω>

1 ;…;ω>
mþ1�> .

This completes the proof. □

As shown by Theorem 2, the solution of Eq. (11) can be obtained by
solving Eq. (13). In the following part, we prove that the optimisa-
tion problem in Eq. (13) can be reformulated as a convex one. This
will justify our claim that our algorithm can be addressed by
solving a convex optimisation problem.

Proposition 3. The optimisation problem in Eq. (13) is equivalent to

min
η

minbω ;b

1
2

∑
mþ1

p ¼ 1

‖bωp‖2

ηp

s:t: yi ∑
mþ1

p ¼ 1
bω>
p ϕpðxiÞþb

 !
Z1; 8 i; ∑

mþ1

p ¼ 1
ηpR

2
p ¼ 1; ηpZ0; 8p;

ð19Þ

which is jointly convex with respect to η, bω and b.

Proof. Let us define bωp : ¼ ffiffiffiffiffi
ηp

p ~ωp. By substituting bωp into Eq. (14)
and replacing J ðηÞ in Eq. (13) with the result in Eq. (14), we obtain
the optimisation problem in Eq. (19). Its objective function is a
ratio of a quadratic function (‖bωp‖2) to a linear function (ηp).
According to [27, Chapter 3.2.6, Example 3.18, p. 89], this function
is convex. Also, because all the constraints are linear function of η,bω and b, the feasible domain of this optimisation is convex.
Therefore, the problem in Eq. (19) is convex with respect to its
variables. This completes the proof. □

Interestingly, we find that Eq. (19) has a form similar to the one
in [17], with the only difference that the constraint ∑mþ1

p ¼ 1ηpR
2
p ¼ 1

is used in our algorithm while ∑m
p ¼ 1ηp ¼ 1 is used in [17]. The

problem in Eq. (19) can be solved by any MKL packages sharing the
same routine: updating the structural parameters of SVM, α, and
the weights of base kernels, η, alternately. Specifically, α is updated
with the current η by solving

max
α

1>α�1
2 ðα○yÞ>KðηÞðα○yÞ

� �
; s:t: α>y¼ 0; αZ0; ð20Þ

which is the dual problem of Eq. (14). Then, the weights η are
updated with the obtained α by using the reduced gradient
descent method [17]. Specifically, the cost function for updating
η is

min
η

1>α0�
1
2
ðα0○yÞ>KðηÞðα0○yÞ

s:t: ∑
mþ1

p ¼ 1
ηpR

2
p ¼ 1; ηpZ0; 8p; ð21Þ

where α0 is obtained in the last iteration with fixed η. Note that
Eq. (21) is a constrained optimisation problem w.r.t η. The
positivity and equality constraints have to be maintained during
the update of η. Such problems can be effectively solved via the
reduced gradient descent method [17]. This procedure repeats
until convergence. Our algorithm is listed in Algorithm 1.

Algorithm 1. The proposed L2BRMKL.

1: Initialise η0;Kmþ1 ¼ I and ηmþ1 ¼ 1=C0.
2: Calculate R2

pðp¼ 1;…;mþ1Þ for each base kernel by
following Eq. (3).

3: i’0
4: repeat
5: Obtain αiþ1 by solving Eq. (20) with ηi.
6: Update ηiþ1 by solving Eq. (21) via the reduced gradient

descent method [17] with αiþ1.
7: i’iþ1
8: until maxfjηiþ1

1 �ηi1j;…; jηiþ1
mþ1�ηimþ1jgo1e�4

Applying Proposition 2 (or Theorem 2), we know that the SVM
decision function produced by the problems in Eqs. (11) and (13) is
the same. Also, according to Proposition 3, we can solve Eq. (13)
by solving the equivalent problem in Eq. (19). Therefore, after
we obtain the optimal α⋆; b⋆ and η⋆ by solving Eq. (19), we can
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directly write the SVM decision function as

f ðxÞ ¼ ∑
n

i ¼ 1
α⋆i yi ∑

m

p ¼ 1
η⋆p kpðxi; xÞþb⋆; ð22Þ

and it will be used to classify test samples.
We close this subsection by highlighting the differences between

the proposed L2BRMKL and our previous ℓ2 tr St MKL in [20],
where the trace of a total scatter matrix in the feature space HðγÞ
is used to substitute R2

0ðγÞ. Compared with ℓ2 tr St MKL, L2BRMKL
has an objective function that can be proved as an upper bound
related to the generalisation performance of the SVM classifier, as in
Proposition 1. However, ℓ2 tr St MKL does not have this merit
because the trace of the total scatter matrix is only a lower (rather
than upper) bound of R2

0ðγÞ [29]. This difference is important in that
it provides better theoretical justification for our algorithm. And we
do observe the improvement brought by such a difference in the
experimental study.

4. Discussion on the improvement

In this section, we discuss the potential aspects that contribute
to the improvement achieved by our algorithm. Also, to better
demonstrate how these aspects contribute, we develop two
additional MKL algorithms in which only one aspect is improved
while the other is kept unchanged.

4.1. Approximating the radius

To show the help of this aspect, we modify the objective
function of the algorithm in [19], which directly incorporates the
radius information by using R2

0ðγÞ. Maintaining all the other
settings in [19], we only replace R2

0ðγÞ with ∑m
p ¼ 1γpR

2
p . Specifically,

its objective function now becomes

min
γ;ω;b;ξ

1
2

∑
m

p ¼ 1
γpR

2
p

 !
‖ω‖2þC∑n

i ¼ 1ξi

s:t: yiðω>ϕðxi; γÞþbÞZ1�ξi; ξiZ0; 8 i; ∑
m

p ¼ 1
γp ¼ 1; γpZ0; 8p:

ð23Þ
Following the work in [19], the parameter C is chosen by cross-
validation. Since this objective function is based on the SVM
classifier with 1-normed soft margin, we call the resulting algo-
rithm L1BRMKLþC. By comparing this algorithm with that in [19],
we can see whether the approximation to the radius contributes to
the improvement on the performance of MKL.

4.2. Automatically tuning the regularisation parameter C

We design another algorithm, termed as L2BRMKLþC, to inves-
tigate the benefit of automatically tuning C in MKL algorithms.
L2BRMKLþC shares the same optimisation problem with the pro-
posed L2BRMKL. They only differ in that L2BRMKLþC determines C
by employing multi-fold cross-validation still. By comparing
L2BRMKL with L2BRMKLþC, we can see whether automatically
tuning C really helps.

5. Experimental results

This experiment aims to evaluate the proposed MKL algorithm,
L2BRMKL, with respect to classification accuracy and computa-
tional efficiency. It is compared to a set of state-of-the-art MKL
algorithms, including (i) the commonly used margin-only algo-
rithm SimpleMKL [17]; (ii) three existing radius-incorporated
algorithms RMKL [18], MBMKL [19], and ℓ2 tr St MKL [20];

(iii) recently developed non-sparse MKL algorithm NSMKL [24]
which constrain the kernel weights with different norms; and
(iv) unweighted MKL algorithm UWMKL that simply uses the
average of all base kernels.

5.1. Data sets and experimental settings

We firstly use the 11 UCI machine learning benchmark data
sets, which have been widely used to evaluate MKL algorithms
[19,18,24]. Their names are listed in Table 2, and the data sets can
be downloaded from the Internet.4

Every feature in these data sets is normalised to have zero mean
and unit variance. To accumulate statistic, 30 training and test splits
are created for each data set. For each split, 20% of samples in the data
set are randomly selected as training data and the rest 80% is used for
test. To predefine base kernels, we adopt four types of kernel
functions, including Gaussian kernel kðxi; xjÞ ¼ expð�‖xi�xj‖2=σÞ,
Laplacian kernel kðxi; xjÞ ¼ expð� Jxi�xj J=

ffiffiffi
σ

p Þ, inverse square dis-
tance kernel

kðxi; xjÞ ¼
1

‖xi�xj‖2=σþ1
;

and inverse distance kernel

kðxi; xjÞ ¼
1

Jxi�xj J=
ffiffiffi
σ

p þ1
;

where σ denotes the kernel parameter. Let σ0 stand for the average
value of the pairwise Euclidean distance between samples in a
training set. In this experiment, σ is set as 2tσ0 with t ¼
�2; �1;0;1;2, and employed for each kernel. In this way, we
generate 20 (4�5) base kernels and use them in all the algorithms
conducted on the 11 UCI data sets.

For each data set, an algorithm is trained and tested on the 30
training/test splits, and the average classification accuracy and
standard deviation are reported. To conduct a rigorous comparison,
the paired Student's t-test is performed. The p-value of this test
represents the probability that the two sets of results in comparison
come from the distributions with an equal mean. A p-value of 0.05 is
considered statistically significant and used here.

In addition to the UCI data sets, an AD data set from the
Alzheimer Disease Neuroimaging Initiative (ADNI) database is
used. Each sample has 229 features from four data sources,
including three CSF (cerebrospinal fluid) biomarkers, 63 left
hippocampal shape features, 63 right hippocampal shape features
and 100 regional grey matter volumes. As shown in Table 1, three
tasks are defined to differentiate different clinic groups, including
MCI vs. NC (normal control), PMCI (converters) vs. NC, and PMCI
vs. SMCI (non-converters). In general, these clinic groups are
largely overlapped with each other, making the prediction tasks
challenging. MCI consists of two subgroups PMCI and SMCI. PMCI
is more AD-like, while SMCI is more NC-like. Therefore, there is an
increasing degree of difficulty to differentiate PMCI from NC, MCI
from NC, and PMCI from SMCI. Especially, the last task, which tells
the MCI converters (PMCI) from the non-converters (SMCI), is very
challenging and also of great importance in AD prediction.

To predefine the base kernels, this experiment applies the
above four types of kernel functions to each data source. For each
source, five different kernel parameter σ values are set for each
type of kernel in the same way as the UCI data sets. By doing so, 80
(4�4�5) base kernels are created in total, with 20 base kernels
for each data source. As seen from Table 1, the number of samples
in these prediction tasks is generally small. To make a good use of
these samples, we employ the LOO strategy to evaluate each MKL

4 http://archive.ics.uci.edu/ml/datasets.html
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algorithm. In this strategy, each sample is used as the test sample
in turn to form a classification session. The classification results of
all the sessions are pooled to obtain classification accuracy.

The proposed L2BRMKL algorithm can automatically tune C. For
other algorithms, C has to be chosen by cross-validation. In this
experiment, four-fold cross-validation is applied to a large range
½2�5;2�3;…;215� to choose C. The experiment is conducted on a

high-performance cluster, where each node has eight cores with
2.3 GHz CPU and 2 GB memory.

5.2. Results on UCI data sets

The classification results are listed in Table 2. For each data set,
the highest accuracy and those whose differences from the highest

Table 1
Summary of the data sets used in the AD prediction experiments.

Data set Instances Features

# Positive # Negative # CSF biomarkers Hippocampal shape # Regional gray matter volumes

# Left # Right

PMCI vs. NC 50 70 3 63 63 100
MCI vs. NC 121 70 3 63 63 100
PMCI vs. SMCI 50 71 3 63 63 100

Table 2
Comparison of classification accuracy (in percentage) obtained by different MKL algorithms on UCI data sets and the statistical test result. Boldface indicates the highest
accuracy and those whose differences from the highest accuracy are not statistically significant (evaluated by paired Student's t-test with p-value Z0:05). The three numbers
in each cell represent the average classification accuracy, standard deviation and the p-value.

Data set L2BRMKL proposed ℓ2trStMKL [20] SimpleMKL [17] RMKL [18] MBMKL [19] Non-SparseMKL [24] UWMKL

p¼2 p¼3

Coloncancer 71.6 71.5 67.9 68.5 68.3 66.7 66.0 68.1
76.6 76.8 76.3 7 7.0 7 7.1 7 5.6 7 4.8 7 5.2
1.00 0.77 0.00 0.00 0.00 0.00 0.00 0.00

Fourclass 99.9 99.9 99.9 99.9 99.9 99.8 99.9 99.0
70.0 70.1 70.0 70.1 70.0 70.1 70.2 70.5
1.00 0.16 1.00 0.16 1.00 0.06 0.02 0.00

Germannum 71.6 71.5 71.1 71.5 70.9 72.9 72.7 72.2
71.0 71.2 71.3 71.5 71.2 71.5 71.5 71.7
0.00 0.00 0.00 0.00 0.00 1.00 0.31 0.02

Heart 82.9 81.5 82.2 80.9 82.7 81.4 81.1 79.5
71.6 72.4 72.5 72.6 71.6 73.1 72.9 73.6
1.00 0.00 0.15 0.00 0.41 0.01 0.00 0.00

Ionosphere 66.2 64.7 65.1 65.3 66.4 65.0 65.0 65.1
73.0 71.1 71.2 71.5 73.3 71.2 71.2 71.2
0.52 0.00 0.02 0.08 1.00 0.02 0.02 0.03

Liver 60.6 59.9 59.6 59.3 60.4 61.2 61.5 61.7
72.3 72.7 72.5 72.5 72.6 73.6 73.9 74.4
0.22 0.05 0.01 0.00 0.16 0.30 0.69 1.00

Musk1 83.1 76.7 78.9 80.4 82.2 53.8 53.3 51.2
73.1 78.9 74.5 74.2 73.7 75.9 76.9 76.4
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sonar 75.9 75.7 73.2 74.9 74.6 74.2 74.0 73.9
73.2 73.1 74.5 74.5 72.9 74.3 75.6 75.7
1.00 0.65 0.00 0.11 0.00 0.06 0.12 0.10

Splice 68.7 63.7 64.7 62.1 70.4 56.2 55.8 55.1
75.2 73.9 75.4 74.4 74.5 74.4 74.6 74.5
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Wdbc 95.9 95.8 95.4 95.8 95.6 94.1 94.2 94.4
70.9 71.0 71.1 71.0 71.1 72.1 72.4 72.3
1.00 0.52 0.03 0.58 0.15 0.00 0.00 0.00

Wpbc 76.0 75.8 76.0 76.1 76.1 75.6 75.7 75.3
70.3 71.3 70.5 70.6 70.2 71.8 71.4 72.8
0.23 0.14 0.21 1.00 0.60 0.12 0.16 0.15

Average 77.5 76.1 75.8 75.9 77.0 72.8 72.7 72.3
Win 9 6 3 5 7 5 4 3
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one are not statistically significant are shown in bold. From this
table, we can observe that (i) the proposed L2BRMKL and the
existing radius-incorporated MKL algorithms [18–20] (with aver-
age accuracy of 77.5%, 75.9%, 77.0% and 76.1%) achieve overall
better classification than the margin-based ones [17,24] (with
average accuracy of 75.8% and 72.8% or 72.7%). This demonstrates
the effectiveness of incorporating the radius information; (ii)
among the radius-incorporated MKL algorithms, L2BRMKL attains
the highest average accuracy 77.5% and wins on nine of the 11 data
sets. This result initially validates its advantage and provides a
basis to investigate its performance on AD prediction tasks in
further.

5.3. Results on the tasks of AD prediction

In addition to classification accuracy, we adopt another criter-
ion widely used in medical applications, i.e., Matthews Correlation
Coefficient (MCC), to evaluate the proposed algorithm. MCC is
defined as

MCC¼ TPnTN�FPnFNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ

p ; ð24Þ

where TP, TN, FP and FN represent the number of true positives,
the number of true negatives, the number of false positives and
the number of false negatives, respectively. As seen from the
definition, MCC takes both “sensitivity” and “specificity” of the
classification into account, and is a balanced measure of classifica-
tion performance. The classification accuracy and MCC results are
reported in Tables 3 and 4, respectively. As previous, the highest
values are highlighted in bold for each task. Note that no standard
deviation is reported here, because there is only one classification
accuracy for each task when the LOO strategy is used. Also, due to
this fact, the statistical test becomes inapplicable and no result is
reported either.

From Table 3, we can see that L2BRMKL achieves the overall
best classification performance in the three tasks. In the task of
PMCI vs. NC, it obtains the equally best performance as ℓ2 tr St
MKL, RMKL and MBMKL. In the other two tasks, it outperforms all
the other algorithms. Also, the advantage of L2BRMKL becomes
more pronounced with the increasing degree of difficulty of the

tasks. As seen, the most significant improvement is achieved on
the task of PMCI vs. SMCI, where 3.3% improvement (75.2% vs.
71.9%) is gained over the second best one, SimpleMKL. In addition,
for the easiest task of PMCI vs. NC, all the four radius-incorporated
methods (L2BRMKL, RMKL, MBMKL, and ℓ2 tr St MKL) perform
better than the margin-only methods, indicating the advantage of
incorporating radius information again. With the introduction of
SMCI, the second and third tasks become more difficult. As
observed, the performance of ℓ2 tr St MKL, RMKL and MBMKL
decreases significantly from 88.3% to 71.1%, 88.3% to 67.8%,
and 88.3% to 69.4%, respectively. Although the performance of
L2BRMKL also decreases due to the increased difficulty, its
decrease is the smallest one. These results demonstrate the
superiority of the proposed L2BRMKL on these AD prediction
tasks. Also, this situation is further confirmed by the MCC values
reported in Table 4, where the proposed L2BRMKL consistently
shows the highest MCC values on the three AD prediction tasks.

To check whether the approximation to the radius (discussed in
Section 4.1) contributes to the above improvement, we compare
MBMKL in [19] and the L1BRMKLþC in Section 4. Recall that they

Table 3
Classification accuracy (in percentage) of different MKL algorithms.

Data set L2BRMKL proposed ℓ2trStMKL [20] SimpleMKL [17] RMKL [18] MBMKL [19] Non-SparseMKL [24] UWMKL

p¼2 p¼3

PMCI vs. NC 88.3 88.3 87.5 88.3 88.3 85.8 85.0 85.8
MCI vs. NC 75.4 74.4 72.3 69.6 72.3 74.8 73.8 73.3
PMCI vs. SMCI 75.2 71.1 71.9 67.8 69.4 70.3 67.8 67.8

Average 79.6 77.9 77.2 75.2 76.7 77.0 75.5 75.6
Win 3 1 0 1 1 0 0 0

Table 4
Comparison of MCC (in percentage) of different MKL algorithms.

Data set L2BRMKL proposed ℓ2trStMKL [20] SimpleMKL [17] RMKL [18] MBMKL [24] Non-SparseMKL [19] UWMKL

p¼2 p¼3

PMCI vs. NC 76.2 76.2 74.9 76.0 76.2 71.2 69.7 71.0
MCI vs. NC 45.9 43.7 38.0 30.9 38.8 44.7 43.6 42.3
PMCI vs. SMCI 48.2 39.9 40.9 32.1 35.5 38.3 33.3 33.0

Average 56.8 53.3 51.3 46.3 50.2 51.4 48.9 48.8
Win 3 1 0 0 1 0 0 0

Table 5
Classification accuracy (in %) of L2BRMKL, L1BRMKLþC and MBMKL [19].

Data set L2BRMKL proposed L1BRMKLþC MBMKL [19]

PMCI vs. NC 88.3 90.8 88.3
MCI vs. NC 75.4 71.2 72.3
PMCI vs. SMCI 75.2 73.6 69.4

Average 79.6 78.5 76.7

Table 6
Classification accuracy (in percentage) of L2BRMKL and L2BRMKLþC.

Data set L2BRMKL proposed L2BRMKLþC

PMCI vs. NC 88.3 87.5
MCI vs. NC 75.4 71.2
PMCI vs. SMCI 75.2 68.6

Average 79.6 75.8
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only differ in the way to estimate the radius. The results are
reported in Table 5. The performance of L2BRMKL is also quoted
for reference.

From this table, we can see that L1BRMKLþC shows an overall
better performance than MBMKL (78.5% vs. 76.7% by average), and
achieves a clear improvement by 4.2% (73.6% vs. 69.4%) at the most
difficult task of PMCI vs. SMCI. We conjecture that the inferiority of
MBMKL to L1BMKLþC is due to the issue of numerical instability.
Recall that MBMKL has a tri-level optimisation process, in which
the radius of MEB is updated by solving a QP problem at each
iteration. In this case, any numerical error occurring in solving this
QP problem could adversely affect and entangle with the optimi-
sation of structural parameter α and in turn the kernel weights γ.
And such numerical errors could accumulate with the increasing
number of iterations. A rigorous theoretical analysis of this
numerical instability issue will be a good topic in our future work.
At last, note that despite its advantage over MBMKL, L1BRMKLþC
still performs overall worse than the proposed L2BRMKL.

To check the contribution of automatically tuning the regularisa-
tion parameter C, we compare L2BRMKL with the L2BRMKLþC in
Section 4.2. The only difference between them is how C is tuned. As
shown in Table 6, L2BRMKL consistently outperforms L2BRMKLþC.
Also, the more difficult the task is, the more the improvement is
attained. These results demonstrate the benefit of automatically
tuning C on these classification tasks. The inferior performance of
L2BRMKLþC is due to the following two factors: (i) the estimate of C
obtained by cross-validation becomes unreliable when the number
of training samples is small; and (ii) cross-validation can only
examine a limited number of possible C values. These could result
in a less appropriate C value and adversely affect the performance of
L2BRMKLþC.

5.4. Computational efficiency

In this experiment, we first analyze the computational advan-
tage of the proposed L2BRMKL and then conduct experimental
comparison.

To facilitate the analysis, we use the commonly used SimpleMKL
as a reference. In specific, we treat the computational cost of training
SimpleMKL [17] on a set of samples with a preset regularisation
parameter C as a unit, denoted by τ0. Roughly speaking, under the
same setting, the computational cost of L2BRMKL and NSMKL [24]
will be at the order of τ0, while the cost of RMKL [18] and MBMKL
[19] will be higher than τ0.

To choose a suitable value for C, the four existing algorithms
employ multi-fold cross-validation. Let k be the number of folds and
let s be the number of candidate C values tested in the cross-
validation process. Then, we can know that for these four algorithms,

their cost on cross-validation will be no less than the order of
ksτ0

5. Differently, by tuning C via the MKL process, the proposed
L2BRMKL can maintain the cost at the order of τ0, since only the
number of kernel weights is slightly increased, fromm tomþ1. Also,
among the four existing algorithms MBMKL [19] needs to compute
the radius of MEB by solving a QP problem at each iteration. In
contrast, the proposed L2BRMKL employs an approximation to the
radius and therefore avoids such computation. This makes L2BRMKL
more efficient than MBMKL in terms of integrating the radius
information. Putting the above discussion together, we can see that
L2BRMKL has the overall highest computational efficiency. Note that
the above analysis does not depend on the machine, platform or
language used to implement these algorithms.

As an experimental support to the above analysis, we compare
the timing result of the above five MKL algorithms on three largest
UCI data sets (Germannum, Splice and Wdbc) and the three AD
prediction tasks. All the algorithms are implemented in Matlab,
and no special measure is taken to optimise the speed of
L2BRMKL. The timing result is the sum of cross-validation time
and training time. The UWMKL algorithm is not included because
it does not involve any learning procedure. The logarithm is
applied to provide better illustration. As seen in Fig. 1(a), L2BRMKL
(in black) is computationally much more efficient than the other
MKL algorithms, especially when compared with the radius-
incorporated ones, RMKL (in cyan) and MBMKL (in yellow). For
example, on the data set of Germannum, the difference could reach
the order of 103. Also, SimpleMKL and MSMKL generally show
similar computational cost while RMKL and MBMKL are compu-
tationally most expensive. Fig. 1(b) shows the case for three AD
prediction tasks, in which the computational advantage of the
proposed L2BRMKL can still be seen. These timing results are well
consistent with the above analysis.

6. Conclusion

Multiple kernel learning has become an effective method to
predict AD by combining information from different sources.
However, the recently developed radius-incorporated MKL algo-
rithms do not give satisfactory performance on AD prediction
tasks which are often difficult and only have a small number of
training samples. To improve this situation, this paper proposes an
improved radius-incorporated MKL algorithm to better handle the
AD prediction tasks. Instead of rigidly computing the radius of
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Fig. 1. Experimental comparison of timing results of different MKL algorithms, where L2BRMKL is the proposed method. (a) Timing result on three UCI data sets. (b): Timing
result on three AD prediction tasks. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

5 Without loss of generality, we ignore the variation on training time due to
that only ðk�1Þ=k of training samples are used in each training session of a k-fold
cross-validation.
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MEB, it approximates this radius with a linear combination of the
radiuses pre-computed with each base kernel. Also, it absorbs the
regularisation parameter into the MKL process and jointly opti-
mises it with the other kernel combination weights. Through
theoretical analysis, we discuss the connection of the proposed
MKL algorithm to the well-known SimpleMKL algorithm and show
that it can be readily solved. The effectiveness of the proposed
algorithm is scrutinised and experimentally investigated on both
pattern recognition benchmark data sets and three AD prediction
tasks. As observed, it produces overall better classification perfor-
mance and achieves higher computational efficiency.

The result in this paper also indicates that for the radius-
incorporated MKL methods, how to compute the radius and design
the objective function can significantly impact the kernel learning
performance in practice. This raises interesting questions for
both MKL research and its real applications, and they are worth
exploring in the future work.
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